1 (C) : We know that, Energy of the particle is,
$\mathrm{E}=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2}$
$=\frac{1}{2} m\left(\frac{2 \pi}{T}\right)^{2} A^{2}$
$=\frac{1}{2} \times \frac{4 \pi^{2}}{\mathrm{~T}^{2}} \mathrm{~mA}^{2}$
$\mathrm{E}=\frac{2 \pi^{2} \mathrm{~mA}^{2}}{\mathrm{~T}^{2}}$
\therefore Total energy of particle is $\frac{2 \pi^{2} \mathrm{~mA}^{2}}{\mathrm{~T}^{2}}$.
2(D) : Given, pressure, $P_{1}=P_{2}=P$ Densities of gases are d_{1} and d_{2} We know that, $\mathrm{P}_{1}=\frac{1}{3} \mathrm{~d}_{1} \mathrm{C}_{1}^{2}$ And
$\mathrm{P}_{2}=\frac{1}{3} \mathrm{~d}_{2} \mathrm{C}_{2}^{2}$
$\because \mathrm{P}_{1}=\mathrm{P}_{2}$
$\frac{1}{3} \mathrm{~d}_{1} \mathrm{C}_{1}^{2}=\frac{1}{3} \mathrm{~d}_{2} \mathrm{C}_{2}^{2} \frac{\mathrm{~d}_{1}}{\mathrm{~d}_{2}}=\frac{\mathrm{C}_{2}^{2}}{\mathrm{C}_{1}^{2}}$
$\frac{1}{16}=\left(\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}\right)^{2}\left(\frac{\mathrm{~d}_{1}}{\mathrm{~d}_{2}}=\frac{1}{16}\right)$
$\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{4}{1}$
3 (C) : Given
$\mathrm{n}=1$ mole
$\Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1}=(150-0)=150^{\circ} \mathrm{C}$
$\mathrm{R}=8.3 \mathrm{~J} / \mathrm{K} . \mathrm{mol}, \mathrm{C}_{\mathrm{P}}=2.5 \mathrm{R}$
$C_{P}-C_{V}=R \Rightarrow C_{V}=C_{P}-R=2.5 R-R=1.5 R$
$\mathrm{dQ}=\mathrm{dU}+\mathrm{dW} \Rightarrow \mathrm{dQ}=\mathrm{dU}(\because \mathrm{dW}=0)$
$\mathrm{dQ}=\mathrm{nCC}_{\mathrm{V}} \Delta \mathrm{T}$
$\mathrm{dQ}=\mathrm{n} 1.5 \mathrm{R} \Delta \mathrm{T}$
$\mathrm{dQ}=1 \times 1.5 \times 8.3 \times 150=1867.5 \mathrm{~J}$
$d Q=1867.5 \mathrm{~J}$
4 (C) : Given that, Weight of the wooden block $(\mathrm{W})=\mathrm{Vdg}=\mathrm{ALdg}$

From the Archimedes principle, we know thatWeight of wooden block = Upthrust due to liquid of density $n \rho+$ upthrust due to liquid density ρ

$$
\begin{aligned}
\text { ALdg } & =(p L) A(n \rho) g+(1-p) L A \rho g \\
\text { ALgd } & =\operatorname{ALg}(n \rho p)+(1-p) A L g \rho \\
d & =(1-p) \rho+p n \rho \\
d & =\rho[1+(n-1) p]
\end{aligned}
$$

5 (C)
$\Delta \mathrm{l}=\frac{\mathrm{Fl}}{\mathrm{AY}}$
$\operatorname{area}(\mathrm{A})=\pi r^{2}$
$\Delta \mathrm{l}_{1}=\frac{\mathrm{mgl}}{\pi \mathrm{r}^{2} \mathrm{Y}}$
elongation in wire- $2 \mathrm{be}=\Delta \mathrm{l}_{2}$

$$
\begin{aligned}
& \Delta l_{2}=\frac{m g(2 l)}{\pi(2 r)^{2} Y}=\frac{m g l}{2 \pi r^{2} Y} \\
& (\Delta \mathrm{l})_{\text {net }}=\Delta \mathrm{l}_{1}+\Delta \mathrm{l}_{2} \\
& =\frac{\mathrm{mgl}}{\pi \mathrm{r}^{2} \mathrm{Y}}+\frac{\mathrm{mgl}}{2 \pi r^{2} \mathrm{Y}} \\
& \left(\Delta l_{\text {net }}=\Delta \mathrm{l}_{1}+\Delta \mathrm{l}_{2}\right. \\
& =\frac{\mathrm{mgl}}{\pi r^{2} \mathrm{Y}}+\frac{\mathrm{mgl}}{2 \pi r^{2} \mathrm{Y}} \\
& =\frac{3 \mathrm{mgl}}{2 \pi r^{2} \mathrm{Y}}
\end{aligned}
$$

6(D)
Diameters of earth $\left(\mathrm{d}_{\mathrm{e}}\right)=1600 \mathrm{~km}$
Radius of earth $\left(\mathrm{R}_{\mathrm{e}}\right)=\frac{1600}{2}=800 \mathrm{~km}$
Diameters of moon $\left(\mathrm{d}_{\mathrm{m}}\right)=800 \mathrm{~km}$
Radius of moon $\left(R_{m}\right)=\frac{800}{2}=400 \mathrm{~km}$ So, $R_{e}=2 R_{m}$
Acceleration due to gravity at earth $\left(\mathrm{g}_{\mathrm{e}}\right)=\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{Re}^{2}}$
Acceleration due to gravity at moon $\left(\mathrm{gm}_{\mathrm{m}}\right)$
$\mathrm{g}_{\mathrm{m}}=\frac{\mathrm{GM}_{\mathrm{m}}}{\mathrm{R}_{\mathrm{m}}{ }^{2}}$
Dividing equation (ii) by (i), we get,
$\frac{g_{m}}{g_{e}}=\frac{M_{m}}{R_{m}{ }^{2}} \times \frac{R_{e}{ }^{2}}{M_{e}}$
$\frac{g_{m}}{g_{e}}=\frac{M_{m} \times\left(2 R_{m}\right)^{2}}{\left(R_{m}\right)^{2} \times 80 M_{m}}$
$\frac{\mathrm{g}_{\mathrm{m}}}{\mathrm{g}_{\mathrm{e}}}=\frac{4}{80}$
$\frac{g_{m}}{g_{e}}=\frac{1}{20}$
$\mathrm{g}_{\mathrm{m}}=\frac{\mathrm{g}_{\mathrm{e}}}{20}$
$=\frac{\mathrm{g}}{20}$

7 (D) : Given equation of EM wave is
$\mathrm{Ey}=\mathrm{E}_{0} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\jmath}$
Since wave is travelling in x-direction \& Electric field vector is in y - direction \therefore Direction of magnetic field vector will be in z - direction i. e. $C, E_{0} \& B_{0}$ are perpendicular to each other $\hat{\imath} \times \hat{\jmath}=\hat{k}$

$$
\mathrm{B}_{\mathrm{z}}=\mathrm{B}_{0} \sin (\mathrm{kx}-\omega \mathrm{t}) \hat{\mathrm{k}}
$$

$$
B_{0}=\frac{E_{0}}{C}
$$

$\therefore \quad B_{z}=\frac{E_{0}}{C} \sin (k x-\omega t) \hat{k}$
8 (C) :
Given, Voltage, $\mathrm{E}=141 \sin (628 \mathrm{t})$
Standard equation of AC voltage,
$\mathrm{E}=\mathrm{E}_{0} \sin (\omega \mathrm{t})$
On comparing equation (i) and (ii),

$$
\begin{align*}
& E_{0}=141 \mathrm{~V} \tag{ii}\\
& \omega=628 \mathrm{rad} / \mathrm{s}
\end{align*}
$$

The rms value of voltage,
$\mathrm{E}_{\mathrm{ms}}=\frac{\mathrm{E}_{0}}{\sqrt{2}}=\frac{141}{\sqrt{2}}=\frac{141}{1.41}=100 \mathrm{~V}$
And frequency,
$\omega=2 \pi f$
$628=2 \pi \times \mathrm{f}$
$\mathrm{f}=\frac{628}{2 \times 3.14}=\frac{628}{6.28}=100 \mathrm{~Hz}$
9 (D) : Let current I passes through outer loop,
Then magnetic field, $B=\frac{\mu_{0} I}{2 R_{1}}$
And magnetic flux $(\phi)=B A=\frac{\mu_{0} I}{2 R_{1}} \pi R_{2}^{2}$
Mutual inductance, $M=\frac{\phi}{I}=\frac{\mu_{0} \pi R_{2}^{2}}{2 \mathrm{R}_{1}}$
Hence, $\mathrm{M} \propto \frac{\mathrm{R}_{2}^{2}}{\mathrm{R}_{1}}$
10 (B) : Given, radius of circle $=0.8 \mathrm{~m}$, time $=2 \mathrm{sec}$
We know that, magnetic field $(B)=\frac{\mu_{0}}{4 \pi} \frac{2 \pi i}{r}$
$B=\frac{\mu_{0} \mathrm{i}}{2 \mathrm{r}}$
For helium nucleus, $\mathrm{q}=\mathrm{it}$
$\mathrm{i}=\frac{2 \mathrm{e}}{\mathrm{t}}=\frac{2 \times 1.6 \times 10^{-19}}{2}$
$\mathrm{i}=1.6 \times 10^{-19} \mathrm{~A}$
Putting the value of ' i ' in equation (i), we get -
$B=\frac{\mu_{0} \times 1.6 \times 10^{-19}}{2 \times .8}$
$B=\mu_{0} \times 10^{-19} T$
11 (D) : Given, Side of square conductor (a) = $2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}$
Length (l) $=12 \mathrm{~m}$
Resistance $(\mathrm{R})=0.072 \Omega$
Area $(A)=a^{2}=\left(2 \times 10^{-3}\right)^{2}=4 \times 10^{-6} \mathrm{~m}^{2} \mathrm{We}$ know that,

$$
\begin{aligned}
& \mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{~A}} \\
& \rho=\frac{\mathrm{RA}}{\mathrm{l}} \\
& \rho=\frac{0.072 \times 4 \times 10^{-6}}{12} \\
& \rho=0.006 \times 4 \times 10^{-6} \\
& \rho=2.4 \times 10^{-8} \Omega \mathrm{~m}
\end{aligned}
$$

12 (A)

From figure, Linear momentum is moving anticlockwise direction and perpendicular to radius from point A towards +ve y-axis ($\hat{\jmath}$). From right hand thumb Rule, Angular momentum ($\overrightarrow{\mathrm{L}}$) is towards +ve z-axis (Lh) Now,

$$
\begin{aligned}
\vec{\alpha} & =\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{L}} \\
\vec{\alpha} & =(\mathrm{p} \hat{\jmath}) \times(\mathrm{L} \hat{\mathrm{k}}) \\
& =\mathrm{pL}(\hat{\jmath} \times \hat{\mathrm{k}}) \\
& =\mathrm{pLi}
\end{aligned}
$$

From properties of cross product of 2 vector, therefore the direction of α is +ve x -axis.

13 (A) : We know that,
The young's modulus is $(\mathrm{Y})=\frac{\text { Stress }}{\text { Strain }}$
$\mathrm{Y}=\frac{\mathrm{F} / \mathrm{A}}{\Delta \mathrm{l} / \mathrm{l}}[\because \quad$ Strain is dimensionless $]$
$\mathrm{Y}=\mathrm{N} / \mathrm{m}^{2}$, which is equal to unit of pressure.

14(B)
$\mathrm{m}_{\mathrm{A}}=4 \mathrm{~kg}$
$\mathrm{m}_{\mathrm{B}}=2 \mathrm{~kg}$
$\mathrm{m}_{\mathrm{C}}=1 \mathrm{~kg}$
$\mathrm{F}=14 \mathrm{~N}$

Total mass (m) $=4+2+1=7 \mathrm{~kg}$
Using Newton's second law,
$\mathrm{F}=\mathrm{ma}$
$14=7 a$
$\mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}$
P be the force applied on block A by block B, FBD of block A,

From Newton's second law,
$14-\mathrm{P}=4 \mathrm{a}$
$14-P=4 \times 2$
$\mathrm{P}=14-8$
$\mathrm{P}=6 \mathrm{~N}$
15 (D) : We know,
Range $=u_{s} \times$ time of flight (T)
$\frac{\mathrm{V}_{0}^{2} \sin 2 \theta}{\mathrm{~g}}=\mathrm{V}_{0} \cos \theta \times \mathrm{T}$
$T=\frac{V_{0}^{2}(2 \sin \theta \cos \theta)}{g \times V_{0} \cos \theta}$
Time of flight $(T)=\frac{2 V_{0} \sin \theta}{g}$
16(A)

$$
\begin{aligned}
V & =\sqrt{V_{R}^{2}+\left(V_{L}-V_{c}\right)^{2}} \\
& =\sqrt{(40)^{2}+(60-30)^{2}} \\
& =50 \text { volt }
\end{aligned}
$$

17 (C)
True power consumed $(P)=\frac{V_{\text {rms }}^{2}}{z} \cos \phi$ Where, $\cos \phi=\frac{\mathrm{R}}{\mathrm{Z}}$

$$
\begin{aligned}
P & =\frac{V_{\text {mus }}^{2}}{Z} \times \frac{R}{Z} \\
& =\frac{V_{\text {mms }}^{2} \times R}{Z^{2}} \\
P & =\frac{220 \times 220 \times 18}{33 \times 33} \\
P & =800 \mathrm{~W}
\end{aligned}
$$

18(D) In an LCR series circuit, the capacitive and inductance reactance have opposing effects. So, the net reactance
$\mathrm{X}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}$
And as we know, at resonance
$X_{L}=X_{C}$
Thus, net reactance $(X)=0$.
19(A) $\mathrm{p}+{ }_{3}^{7} \mathrm{Li} \rightarrow 2_{2}^{4} \mathrm{He}$ hence $\mathrm{x}+7 \mathrm{x} 5.60=8 \mathrm{x}$ 7.06 hence $x=17.28$ (remember value is per neucleon)

20 (B) : Ionization energy of H -atom in ground state, $\mathrm{E}_{1}=13.6 \mathrm{eV}$ Energy of an H -atom in first excited state
$=\frac{-13.6}{(2)^{2}}=3.4 \mathrm{eV}$
Hence, energy required to ionize an excited H atom is equal to 3.4 eV or greater than 3.4 eV .

21(C)

$2 \mathrm{E}=1(5+2 \mathrm{r})$
$E=0.8(5+r / 2)$ solving equation
$5+2 \mathrm{r}=1.6\left[5+\frac{\mathrm{r}}{2}\right]$
$\mathrm{r}=\frac{3}{1.2}=2.5 \Omega$
22 (D) :
23(B)
Electrostatic potential energy $\mathrm{U}=\frac{\mathrm{CV}^{2}}{2}$
$\Rightarrow \frac{U}{(\mathrm{Ad})}=\frac{\varepsilon_{0} \mathrm{E}^{2}}{2}$
Electrostatic energy per unit volume $\frac{1}{2} \epsilon_{0} E^{2}$
Electrostatic energy density is $\propto \mathrm{E}^{2}$

24 (B) Due to the charge inside a sphere of radius r only.

25(C)
The escape velocity on earth is given by:
$\mathrm{V}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$
Mathematically orbital velocity is given by
$\Rightarrow V_{o}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}$
On dividing equation 1 and 2 , we get
$\Rightarrow \frac{\mathrm{V}_{\mathrm{e}}}{\mathrm{V}_{\mathrm{o}}}=\sqrt{2}$
Here, $\mathrm{V}_{\mathrm{e}}=2$, so $\mathrm{V}_{0}=\sqrt{2}$
26(C)
Since, orbital velocity $v=\sqrt{\frac{G M}{r}}$ or $v \propto \frac{1}{\sqrt{r}}$
$\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=\sqrt{\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}}$
$\therefore v_{2}=\sqrt{\frac{r_{1}}{r_{2}}} \cdot v=\sqrt{\frac{R}{R+\frac{R}{2}}} \cdot v=\sqrt{\frac{2}{3}} v$.

27 (C)

Accordingly to law of equipartion of energy, energies equally distributed among its degree of freedom. Let transitional and rotaional degree of freedom be f_{1} and f_{2}
$\therefore \frac{\mathrm{K}_{\mathrm{T}}}{\mathrm{K}_{\mathrm{R}}}=\frac{3}{2}$ and $\mathrm{K}_{\mathrm{T}}+\mathrm{K}_{\mathrm{R}}=\mathrm{U}$
Hence the ratio of transitional to rotational degrees of freedom is 3.2 . Since transiational degrees of freedom is , the rotational degrees of freedom must be 2
\therefore Internal energy $(U)=1 \times\left(\mathrm{f}_{1}+\mathrm{rf}_{2}\right)=\frac{1}{2} \mathrm{RT}$
$\mathrm{U}=\frac{1 \times 5 \times 8.3 \times 100}{2}=\mathrm{U}=2075 \mathrm{~J}$
28(A) Will increase
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{l}}{\mathrm{g}_{\text {eff }}}}$
Here, $g_{\text {eff }}=g-\frac{q E}{m}$ hence period will increase.

29(B)
Energy received $E=\frac{n h c}{\lambda}$
$\Rightarrow \mathrm{E}=\mathrm{n}\left(\frac{12409}{\lambda}\right) \mathrm{eV}$
$\Rightarrow 10^{-7}=\mathrm{n} \times \frac{12400}{5000} \times 1.6 \times 10^{-19}$
$\Rightarrow \mathrm{n}=\frac{5}{12.4 \times 1.6} \times 10^{12} \Rightarrow \mathrm{n}=2.5 \times 10^{11}$
30 (C)
31 (A)
$\overrightarrow{\mathrm{r}}=2 \hat{\imath}+4 \hat{\jmath}$
$\mathrm{F}=1 \mathrm{~N}$ (Makes an angle of $\theta=60^{\circ}$ with the positive
$\mathrm{F}_{\mathrm{X}}=1 \times \cos 60^{\circ}=\frac{1}{2}$
$\mathrm{F}_{\mathrm{y}}=1 \times \sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\overrightarrow{\mathrm{F}}=\frac{1}{2} \hat{\imath}+\frac{\sqrt{3}}{2} \hat{\jmath}$
$\vec{\tau}=\vec{r} \times \vec{F}$
$\vec{\tau}=(2 \hat{\imath}+4 \hat{\jmath}) \times\left(\frac{1}{2} \hat{\imath}+\frac{\sqrt{3}}{2} \hat{\jmath}\right)$
$\vec{\tau}=-0.27 \hat{k}$
32 (B)

Centre of mass from 5kg particle,

$$
\begin{aligned}
X_{c m} & =\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \\
& =\frac{5(0)+10(1)}{5+10}=\frac{10}{15}=\frac{2}{3} \mathrm{~m} \approx 67 \mathrm{~cm}
\end{aligned}
$$

33.(B)

In cyclic process ABCA
$\mathrm{Q}_{\text {cycle }}=\mathrm{W}_{\text {cycle }}$
$\mathrm{Q}_{\mathrm{AB}}+\mathrm{Q}_{\mathrm{BC}}+\mathrm{Q}_{\mathrm{CA}}=$ area of $\Delta \mathrm{ABC}$
$+400+100+\mathrm{Q}_{\mathrm{C} \rightarrow \mathrm{A}}=\frac{1}{2}\left(2 \times 10^{-3}\right)\left(4 \times 10^{4}\right)$
$\Rightarrow Q_{C \rightarrow A}=-460 J$
$\Rightarrow Q_{A \rightarrow C}=+460 J$

34(D)
$y=\cos (500 t-70 x)$
As $y \& x$ both are having units of displacement so it means the wave function is displacement of medium particles and particles of medium are oscillating but it is not mentioned that osicllation of medium particles is in which direction so wave can be transverse or longituadinal. The wave is propagating along positive X -axis with speed $\mathrm{V}=$ $\frac{50}{7} \mathrm{~m} / \mathrm{s}$ frequency of wave is given by,
$2 \pi \mathrm{f}=: 500 \Rightarrow \mathrm{f}=\frac{250}{\pi} \mathrm{~Hz}$
The seperation between two closest point which are vibrating in phase are given by, $\Delta x=\lambda=$ $\frac{50 \times \pi}{7 \times 250}=\frac{\pi}{35} \mathrm{~m}=\frac{20 \pi}{7} \mathrm{~cm}$. Work, energy and power

35(C)
In the collision of two bodies of masses m, and m, , velocity of the first mass after the collision is given by:

$$
\begin{aligned}
& \mathrm{v}_{1}=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{u}_{1}+\frac{2 \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{u}_{2}=\frac{(8-2)}{(8-2)} \mathrm{u}_{1}+0 \\
& =\frac{6}{10} \mathrm{u}_{1}\left(\because \mathrm{u}_{2}=0\right) \\
& \therefore \frac{\text { KE after collision }}{\text { KE before collision }(E)}=\frac{\frac{1}{2} \times 8 \times \mathrm{v}_{1}^{2}}{\frac{1}{2} \times 8 \times \mathrm{u}_{1}^{2}} \\
& =\left[\frac{\mathrm{v}_{1}}{\mathrm{u}_{1}}\right]^{2}=\left[\frac{6}{10}\right]^{2}=\frac{36}{100}=0.36
\end{aligned}
$$

36(A) :
Let K and K^{\prime} be the maximum kinetic energy of photoelectrons for incident light of frequency v and 2 v respectively. According to Einstein's photoelectric equation,
$\mathrm{K}=\mathrm{hv}-\mathrm{E}_{0} \ldots$ (1)
and $\mathrm{K}^{\prime}=\mathrm{h}(2 \mathrm{v})-\mathrm{E}_{0}$
$=h v+h v-E_{0}$
$=\mathrm{hv}+\mathrm{K}(\operatorname{using}(\mathrm{A}))$
So,
$K^{\prime}=h v+K$
37(D)
Electric energy dencity
$\mathrm{u}_{\mathrm{e}}=\frac{1}{2} \varepsilon_{0} \varepsilon^{2} \mathrm{rms}$
Ems $=\frac{\mathrm{E}_{0}}{\sqrt{2}}$
$\therefore \mathrm{u}_{\mathrm{e}}=\frac{1}{4} \varepsilon_{0} \mathrm{E}_{0}^{2}$
38(B)
Here $D=9.0 \mathrm{~m}=900 \mathrm{~cm}, \mathrm{~d}=0.2 \mathrm{~mm}=0.02 \mathrm{~cm}$

$$
\lambda=5000 \times 10^{-8} \mathrm{~cm}
$$

Calculation:
\therefore The width of central maximum $=2 \mathrm{w}$
$\beta_{o}=\frac{2 \mathrm{D} \lambda}{\mathrm{d}}=\frac{2 \times 900 \times 5000 \times 10^{-8}}{0.02} \mathrm{~cm}$
$=4.5 \mathrm{~cm}$
39(C)
When V is doubled then using $\mathrm{eV}=1 / 2 \mathrm{mv}^{2}$ we get v will be $\sqrt{2} v$ and $\mathrm{F}=\mathrm{qvB}$ hence F will be $\sqrt{2} F$

40 (C) We know that when a bar magnet is placed in the magnetic field at an angle θ, then torque acting on the bar magnet
$(\tau)=M B \sin \theta=\vec{M} \times \vec{B}$.
41(C) A $\rightarrow(3) ;(B) \rightarrow(1) ; C \rightarrow(4) ;(D) \rightarrow(2)$

$\mathrm{Y}_{1}=\overline{\mathrm{A} \cdot \mathrm{B}}$
$X=\overline{Y_{1}+Y_{1}}=\overline{Y_{1}}$
$\mathrm{X}=\overline{\overline{\mathrm{A} \cdot \mathrm{B}}}=\mathrm{A} \cdot \mathrm{B}$
43(A)
According to Snell's law

$$
\begin{gathered}
\frac{\sin 45^{\circ}}{\sin r}=\sqrt{2} \\
\Rightarrow \sin r=\frac{1}{2} \\
\Rightarrow r=30^{\circ}
\end{gathered}
$$

Mock Test 6 (Physics Solution)

Hence total deflection $=45^{0}-\left(-45^{0}\right)=90$ 。
Hence correct option is (A).
44 (D)

$\frac{\mathrm{P}}{10}=\frac{\mathrm{l}_{1}}{\mathrm{l}_{2}}$

$$
=\frac{3^{2}}{2}
$$

$P=\frac{30}{2}$
$=15 \Omega$
$\mathrm{R}=\frac{\mathrm{pl}}{\mathrm{A}}$
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{l}_{1}}{\mathrm{l}_{2}}$
Length of 15Ω resistance wire is 1.5 m
$\frac{15}{1}=\frac{1.5}{\mathrm{l}_{2}}$
$\mathrm{l}_{2}=0.1 \mathrm{~m}$
45(B)

46(C)
towards the right as its potential energy will decrease.
$\left|\mathrm{E}_{1}\right|>\left|\mathrm{E}_{2}\right|$ as field lines are closer at charge +q , so net force on the dipole acts towards right side. A system always moves to decrease it's potential energy.

47(C)

When two conductors are connected by a conducting wire, then the two conductors should have same potential.
so, $\mathrm{V}_{1}=\mathrm{V}_{2}$
$\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{Q}_{1}}{\mathrm{R}_{1}}=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{Q}_{2}}{\mathrm{R}_{2}}$
$\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{Q}_{1}}{\mathrm{R}_{1}} \times \frac{\mathrm{R}_{1}}{\mathrm{R}_{1}}=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{Q}_{2}}{\mathrm{R}_{2}} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{2}}$
$\frac{\mathrm{Q}_{1} \mathrm{R}_{1}}{4 \pi \mathrm{R}_{1}^{2} \epsilon_{0}}=\frac{\mathrm{Q}_{1} \mathrm{R}_{1}}{4 \pi \mathrm{R}_{2}^{2} \epsilon_{0}}$
$\frac{\sigma_{1} \mathrm{R}_{1}}{\epsilon_{0}}=\frac{\sigma_{2} \mathrm{R}_{2}}{\epsilon_{0}}$
$\frac{\sigma_{1}}{\sigma_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
48(B)
$\mathrm{F}=\frac{K Q^{2}}{r^{2}}$
If 25% of change of A transferred to B then,

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{A}}=\mathrm{Q}-\frac{\mathrm{Q}}{4} \\
&=\frac{3 q}{4} \\
& \mathrm{q}_{\mathrm{B}}=-\mathrm{Q}-\frac{Q}{4} \\
&=\frac{-3 q}{4}
\end{aligned}
$$

$\mathrm{F}_{1}=\frac{k q_{A} q_{B}}{r^{2}}$

$$
\begin{aligned}
& F_{1}=\frac{\mathrm{k}\left(\frac{3 \mathrm{q}}{4}\right)^{2}}{\mathrm{r}^{2}} \\
& \mathrm{~F}_{1}=\frac{9}{16} \frac{\mathrm{KQ}}{\mathrm{r}^{2}} \\
& \mathrm{~F}_{1}=\frac{9 \mathrm{~F}}{16}
\end{aligned}
$$

49(A)
$\mathrm{T}=\frac{2 \pi \mathrm{R}}{\mathrm{V}}$
$\mathrm{V}=\frac{2 \pi \mathrm{R}}{\mathrm{T}}$
$H_{\text {max }}=\frac{\mathrm{v}^{2} \pi^{2} \mathrm{R}^{2} \sin ^{2} \theta}{\mathrm{gT}^{2}}=4 \mathrm{R}$
$\sin \theta=\left(\frac{2 \mathrm{gT}^{2}}{\pi^{2} \mathrm{R}}\right)^{1 / 2}$
$\theta=\sin ^{-1}\left(\frac{2 \mathrm{gT}^{2}}{\pi^{2} \mathrm{R}}\right)^{1 / 2}$

Mock Test 6 (Physics Solution)

50.(A)

Given
$\operatorname{Mass}(\mathrm{m})=.4 \mathrm{~kg}$
Its frequency (n) $=2 \mathrm{rev} / \mathrm{sec}$
Radius (r) $=1.2 \mathrm{~m}$
We know that linear velocity of the body
(v) $=\omega \mathrm{r}$

$$
\begin{aligned}
& =(2 \pi n) r \\
& =2 \times 3.14 \times 1.2 \times 2 \\
& =15.08 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Therefore, tension in the string when the body is at the tip of the circle (T)
$=\frac{\mathrm{mv}^{2}}{\mathrm{r}}-\mathrm{mg}$
$=\frac{0.4 \times(15.08)^{2}}{2}-(0.4 \times 9.8)$
$=45.78-3.92$
$=41.56 \mathrm{~N}$

CHEMISTRY (SECTION - A)

51.

Sol. (B)
$\because 180$ gm glucose has $=\mathrm{N}$ molecules
$\therefore \quad 5.23 \mathrm{gm}$ glucose has $=$
$\frac{5.23 \times 6.023 \times 10^{23}}{180}$
$=1.75 \times 10^{22}$ molecules
52.

Solution: (c)
$\because 100 \mathrm{ml}$ of air at STP contains 21 ml of O_{2}.
$\therefore 1000 \mathrm{ml}$ of air at STP contains 210 ml of O_{2}.
\therefore No. of moles of $O_{2}=$
$\frac{\text { Vol. of } O_{2} \text { in litres under STP conditions }}{22.4 \text { litre }}=$
$\frac{210 / 1000}{22.4}=\frac{21}{2240}=0.0093$
53.

Solution : (a)
We know that velocity of electron in $\mathrm{n}^{\text {th }}$ Bohr's orbit is given by
$v=2.18 \times 10^{6} \frac{Z}{n} \mathrm{~m} / \mathrm{s}$
for $H, Z=1$
$\because v_{1}=\frac{2.18 \times 10^{6}}{1} \mathrm{~m} / \mathrm{s}$
$\because v_{2}=\frac{2.18 \times 10^{6}}{2} \mathrm{~m} / \mathrm{s}=1.09 \times 10^{6} \mathrm{~m} / \mathrm{s}$
54.

Solution: (b)
55.

Solution: (c) $\quad \Delta G=\Delta H-T \Delta S$
$\Delta H=30.56 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta S=0.066 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1} ;$
$\Delta G=0$ at equilibrium; $T=$?
$\therefore \Delta H=T \Delta S$ or $30.56=T \times 0.066$
$T=463 \mathrm{~K}$

56

Solution: (d)

$$
\begin{aligned}
& \mathrm{CH}_{2}=\mathrm{CH}_{2}(g)+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}(\mathrm{~g}) \\
& 4 E_{C-H} \Rightarrow 414 \times 4=16566 E_{C-H} \Rightarrow \\
& 414 \times 6=2484 \quad 1 E_{C=C} \Rightarrow 615 \times 1=615 \\
& 1 E_{C-C} \Rightarrow 347 \times 1=347 \\
& 1 E_{H-H} \Rightarrow 435 \times 1=435 \\
& 4 \Delta H_{C-H}+\Delta H_{C=C}+\Delta H_{H-H}=2706 \longrightarrow 6 \Delta H_{C-H}+1 \Delta H_{C-C}=2831 \\
& \Delta H=2706-2831=-125 \mathrm{~kJ}
\end{aligned}
$$

57.

Solution: (d)
$K_{f}=1.1 \times 10^{-2}, K_{b}=1.5 \times 10^{-3} ;$
$K_{c}=\frac{K_{f}}{K_{b}}=\frac{1.1 \times 10^{-2}}{1.5 \times 10^{-3}}=7.33$
58.

Solution: (a) $\left[H^{+}\right]=5.5 \times 10^{-3}$ mole / litre

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right] \\
& p H=-\log \left[5.5 \times 10^{-3}\right] ; p H=2.26
\end{aligned}
$$

59.

Solution: (a) Calculation of concentrations in moles/litre.
(i) Concentration of $\mathrm{NH}_{4} \mathrm{Cl}=53.5 \mathrm{~g} /$ litre $=\frac{53.5}{53.5}$ moles/litre $=1$ mole/litre
(ii) $1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}=1 \mathrm{M} \mathrm{NH} 44 \mathrm{OH}$, Substituting the values in the Henderson equation of the basic buffer.
$p O H=-\log K_{b}+\log \frac{[\text { salt }]}{[\text { base }]}=$
$-\log 1.8 \times 10^{-5}+\log \frac{1}{1}$
$=4.7447+000=4.7447$
Now since $\mathrm{pOH}+\mathrm{pH}=14$
$p H=14-4.74=9.26$
60.

Sol: A
61.

Solution: (a) $\frac{P_{A}^{0}-P_{A}}{P_{A}^{0}}=\frac{n_{B}}{n_{A}} ; \frac{143-P_{S}}{143}=\frac{0.5 / 65}{158 / 154}$ or $P_{s}=141.93 \mathrm{~mm}$

62. Sol: (c)

63.

Solution (d)
$Q=I \times t=2 \times 193=386 C$
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}$ i.e., $\mathrm{O}^{2-} \rightarrow \frac{1}{2} \mathrm{O}_{2}+2 e^{-}$
i.e., $2 F=2 \times 96500$ gives
$O_{2}=\frac{1}{2}$ mole $=11200$ c.c.
$\therefore 386 c$ will give
$O_{2}=\frac{11200}{2 \times 96500} \times 386=22.4$ c.c.
64.

Solution: (a) $\Lambda_{m}^{0}=57+73=130 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$.
65.

Solution: (b)

$$
\begin{aligned}
& A_{2}(g) \rightarrow B(g)+\frac{1}{2} C(g) \\
& 100 \quad 0 \quad 0 \\
& 100-p \quad p \quad \frac{1}{2} p \\
& 100-p+p+\frac{1}{2} p=120 \text { or } p=40 \mathrm{~mm} \\
& \therefore-\frac{d p_{A_{2}}}{d t}=\frac{40}{5}=8 \mathrm{~mm} \mathrm{~min}^{-1}
\end{aligned}
$$

66.

Solution: (c)

$$
\begin{aligned}
& R=k[A]^{n} ; \text { Also, } 100 R=k[10 A]^{n} ; \\
& \frac{1}{100}=\left[\frac{1}{10}\right]^{n} ; \therefore n=2
\end{aligned}
$$

67.

Sol: (b)
68. Sol: (c)
69. Sol: (b)
70.

Sol: (c)
71.

Sol: (d)
72.

Sol: (c)
73.

Sol: (c)
74.

Sol: (d)
75.

Sol: (c)
76.

Sol: (c)
77.

Sol: (a)
78.

Sol: (d)
79.

Sol: (c)
80.

Sol. (C)
The IUPAC name of the given compound is $2-$ formyl butanedial $\mathrm{O}=\stackrel{4}{\mathrm{C}} \mathrm{H}-\stackrel{3}{\mathrm{C}} \mathrm{H}_{2}-\stackrel{2}{\mathrm{C}} \mathrm{C}-\stackrel{1}{\mathrm{C}} \mathrm{HO} \quad 2$ -
formyl butanedial
The principal functional group is -CHO .
81.

Sol: (d)
82.

Sol: (a)
83.

Sol: (a)
84.

Sol: (b)
85.

Sol: (c)

SECTION - B (Attempt any 10 questions)

86.

Sol: (a)
87.

Sol: (a)
88.

Sol: (a)
89.

Sol: (c)
90.

Sol: (a)
91.

Sol: (c)
92.

Sol: (a)
93. In the following reaction :

Sol: (b)
94.

Sol: (c)

MOCK TEST\#06 [NEET] CHEMISTRY SOLUTIONS
95.

Sol: (a)
96.

Sol: (b)
97.

Sol: (a)
98.

Sol: (c)
99.

Sol: (c)
100.

Sol: (a)

